
COP 3330: Methods In Java Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Methods In Java – A Closer Look

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: Methods In Java Page 2 © Dr. Mark Llewellyn

Methods In Java
• A method is a construct for grouping statements together to

perform some function. By writing a method, you can write the
code once for performing the function in a program and reuse it
in many other programs.

• For example, when you need to find the maximum between two
numbers. Whenever you need this function, you have to write
the following code:

• By defining a method for this code, you do not have to repeatedly
write the code.

int num1, num2, result;

if (num1 > num2)

result = num1;

else

result = num2;

COP 3330: Methods In Java Page 3 © Dr. Mark Llewellyn

Methods In Java

• We’ve already been using several methods in some of the sample
programs we’ve seen. For example, we’ve used:

System.out.print

JOptionPane.showInputDialog

System.out.println

JOptionPane.showMessageDialog

Double.parseDouble

• All of these methods are defined in various Java libraries.
You’ve also been creating your own methods based on UML
class diagrams and are now familiar with the differences between
class and instance methods.

• We now want to consider more complex problems and learn the
concept of method abstraction.

COP 3330: Methods In Java Page 4 © Dr. Mark Llewellyn

Defining Methods In Java

• The syntax for defining a method in Java

is:

modifier returnValueType methodName (parameter list)

{

//method body

}

COP 3330: Methods In Java Page 5 © Dr. Mark Llewellyn

Defining Methods In Java

• The method header specifies the modifiers, return
value, method name, and parameters of the method.

• A method may return a value. The
returnValueType is the data type of the value the
method returns.

• Some methods may perform their desired operations
without returning a value. In this case, the
returnValueType is the keyword void.

• A method that returns a value is called a value-returning
method, and a method that does not return a value is
called a void method.

COP 3330: Methods In Java Page 6 © Dr. Mark Llewellyn

Defining Methods In Java

• The variables defined in method header are known as
formal parameters or simply parameters. A parameter
is like a placeholder. When a method is invoked, a
value is passed to the parameter. This value is referred
to as an actual parameter or argument.

• The parameter list refers to the type, order, and number
of the parameters of a method.

• The method name and the parameter list together
constitute the method signature.

• It is possible for a method to have no parameters.

COP 3330: Methods In Java Page 7 © Dr. Mark Llewellyn

Defining Methods In Java

• The method body contains a collection of statements
that define what the method does, i.e., its functionality.

• A return statement, using the keyword return, is
required for a value-returning methods to return a
result.

• A method terminates when a return statement is
executed.

NOTE:

1. In other languages, methods are referred to as procedures and functions. A value-
returning method is called a function, a void method is called a procedure.

2. You need to declare a separate data type for each parameter. For instance, int

num1, num2 should be replaced by int num1, int num2.

3. A return statement can be included in a void method and is used for terminating

the method and returning control to the caller, the syntax is simply return;.

COP 3330: Methods In Java Page 8 © Dr. Mark Llewellyn

Defining Methods In Java

public static int max (int num1, int num2) {

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

method header

method body

modifiers

return value

type

method

name

formal

parameters

parameter list

method

signature

return value

Invoking the method

int x = max(x, y);

actual parameters

(arguments)

End method

block

Begin method

block

COP 3330: Methods In Java Page 9 © Dr. Mark Llewellyn

Invoking (Calling) Methods In Java
• By creating a method, you give a definition of what the method is to

do. To use a method, you have to call or invoke it.

• There are two ways to invoke a method; the choice is based on whether
the method returns a value or not.

• If the method returns a value, a call is usually treated as a value.

– For example: int larger = max(3, 4);

calls max(3,4) and assigns the result of the method to the variable
larger.

– Another example is: System.out.println(max(3,4)); which
prints the

return value of the method call max(3,4).

• If the method returns void, a call to the method must be a statement.

– For example, the method println returns void and the following call
is a statement:

System.out.println(“Hello!”);

COP 3330: Methods In Java Page 10 © Dr. Mark Llewellyn

Invoking (Calling) Methods In Java

• It is also possible, although rare, that a
value-returning method can be invoked as a
statement in Java. In such a case, the caller
simply ignores the return value.

• When a program invokes a method, program
control is transferred to the called method.
A called method returns control to the caller
when its return statement is executed or
when its method ending closing brace is
reached.

COP 3330: Methods In Java Page 11 © Dr. Mark Llewellyn

Example of a value-returning method

This method is a

class method that

requires two

integer

parameters and

returns an integer

value.

COP 3330: Methods In Java Page 12 © Dr. Mark Llewellyn

pass the value firstNumber

pass the value secondNumber

invoke method max

return result

COP 3330: Methods In Java Page 13 © Dr. Mark Llewellyn

(a) The main

method is invoked

Call Stacks

Space for main method

biggerNumber: ?

number2: ?

number1: ?

Space for main method

biggerNumber: ?

number2: 8

number1: 11

(b) The max method

is invoked

Space for max method

result: ?

num2: 8

num1: 11

Space for main method

biggerNumber: ?

number2: 8

number1: 11

Space for max method

result: 11

num2: 8

num1: 11

(c) The max method

is being executed

Space for main method

biggerNumber: 11

number2: 8

number1: 11

(d) The max method

is finished and the

return value is sent
to biggerNumber

stack is

empty

(e) The main

method is finished

COP 3330: Methods In Java Page 14 © Dr. Mark Llewellyn

Example of a void method

This method is a class method that requires

one double type parameter and does not

return a value. Notice that it does have a

return statement.

COP 3330: Methods In Java Page 15 © Dr. Mark Llewellyn

Overloading Methods

• The max method that we created in the previous value returning
method example works only with integer parameters. What
happens if you try to enter doubles? (Try it and see what
happens! – or see next page!)

• The solution is to create another method with the same name but
with an otherwise different signature. This is called method
overloading.

• For example (also see pages 18-20):

public static double max (double num1, double num2) {

double result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

COP 3330: Methods In Java Page 16 © Dr. Mark Llewellyn

Overloading Methods

COP 3330: Methods In Java Page 17 © Dr. Mark Llewellyn

Overloading Methods

Method Signatures

The method signature refers to the name of the method and the number and types of
its parameters. The return type of the method is not part of its signature.

This means that two methods cannot be overloaded just because they have different
return types, because they would still have the same signature. Thus, the following
two method could not be defined within the same class:

public void aMethod(int a, int b) { . . . }
public int aMethod(int a, int b) { . . . }

However, the following two methods could be defined in the same class as an
overloaded method:

public int anotherMethod(int a, double b) { . . . }
public int anotherMethod(double a, double b){ . . . }

COP 3330: Methods In Java Page 18 © Dr. Mark Llewellyn

COP 3330: Methods In Java Page 19 © Dr. Mark Llewellyn

COP 3330: Methods In Java Page 20 © Dr. Mark Llewellyn

COP 3330: Methods In Java Page 21 © Dr. Mark Llewellyn

Overloading Methods

• The next example takes overloading to a more extreme case.

• What I did in the following example was to overload the max
method six times. Be sure you understand this example: not only
in how the overloading was done but also in how the correct
overloaded method is invoked from within the main method.

• The code for this example begins to get a little bit large to put all
of it in the notes, so I placed the actual source code file on the
course lecture notes page under the link to this document so that
you can look at it and use it. On the next couple of pages, I’ve
only placed selected pieces of this code.

• For practice you should create a couple of more overloaded
versions of the max method each taking in additional parameters.
I’ll put a solution on the practice problems later.

COP 3330: Methods In Java Page 22 © Dr. Mark Llewellyn

Three overloaded versions
of the max() method

COP 3330: Methods In Java Page 23 © Dr. Mark Llewellyn

The main() method

innvocations of the max()

method

COP 3330: Methods In Java Page 24 © Dr. Mark Llewellyn

The output from the program

int biggerInteger = max(number1,number2);

biggerInteger = max(number1,number2, number3);

biggerInteger = max(number1,number2, number3, number4);

COP 3330: Methods In Java Page 25 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

• The key to developing good software is to apply the concept
of abstraction. You’ll learn many different levels of
abstraction as we work our way though the semester.

• Method abstraction is achieved by separating the use of a
method from its implementation. The client can use a
method without knowing how it is implemented. The
details of the implementation are encapsulated in the
method and hidden from the client who invokes the method.
This is known as encapsulation or information hiding.

• If you (the developer) decide to change the implementation,
the client program will not be affected provided that you do
not change the method signature.

COP 3330: Methods In Java Page 26 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

• We’ve already used the System.out.print method
to display a string on the terminal (see next page for a
refresher) and we’ve used the
JOptionPane.showInputDialog method to read
a string from a dialog box, we knew how to invoke
these methods from our program, but we did not know,
nor do we really care to know, how these methods are
implemented.

• Thus, we have treated the implementation of these
methods as a “black box”, in that we know what kind of
service is provided by the black box, but we don’t need
to know how they are implemented in order for us to
take advantage of the service they provide.

COP 3330: Methods In Java Page 27 © Dr. Mark Llewellyn

COP 3330: Methods In Java Page 28 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

Method Body

Method Header

A black box

Optional arguments

for input

Optional return value

COP 3330: Methods In Java Page 29 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

• The concept of method abstraction can also be applied to
the process of developing programs.

• When developing a large program, you can use the divide
and conquer strategy, also known as stepwise refinement,
to decompose it into sub-problems. The sub-problems can
be further decomposed into smaller, more manageable
problems.

• To illustrate this process, we’ll develop a program that
will display the calendar for a given month of the year.
The program will ask the user to enter the year and the
month for the calendar they would like to see and then
build and display that calendar on the screen. We want
the program to work for any year.

COP 3330: Methods In Java Page 30 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

COP 3330: Methods In Java Page 31 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

• How would you approach solving this problem? (Please
don’t say that you would immediately head to the
computer and start hammering out a Java program!)

• By trying to work out a solution to every detail of the
problem initially, you may actually block or obscure the
problem solving process. Solving the problem should be
a smooth systematic process and not a hap-hazard detail-
oriented approach in which it is actually more likely to
overlook a detail than is the case with a more systematic
approach.

• The correct approach is to use method abstraction to
isolate the details from design and only later implement
the details.

COP 3330: Methods In Java Page 32 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

printCalendar

(main)

readInput printMonth

• At the highest level of abstraction in this problem, we’ll view the
problem of printing the calendar as a problem that contains two
sub-problems.
– Sub-problem 1 is reading the input from the user (readInput).

– Sub-problem 2 is printing the monthly calendar (printMonth).

COP 3330: Methods In Java Page 33 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

printMonth

printMonthTitle printMonthBody

• After thinking about the problem some more, we’ll decide that
the sub-problem of printing the monthly calendar consists of two
sub-problems itself:

– Sub-problem 1 is printing the monthly title (header part of the calendar)
(printMonthTitle).

– Sub-problem 2 is printing the body of the calendar (printMonthBody).

COP 3330: Methods In Java Page 34 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

readInput

COP 3330: Methods In Java Page 35 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement
• The printMonthTitle sub-problem consists of printing

three lines: the month and year on one line, a dashed line, and a
line containing the days of the week.

• You need to get the month name from the numeric input supplied
by the user. We’ll do this with a sub-problem titled
getMonthName.

printMonth

printMonthTitle printMonthBody

getMonthName

COP 3330: Methods In Java Page 36 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

• In order to print the month body, we’ll need to know

which day of the week is the first day of the month.

This sub-problem will be called getStartDay.

printMonth

printMonthTitle printMonthBody

getMonthName getStartDay

COP 3330: Methods In Java Page 37 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

• How do we get the day of the week that begins the month?

• There are several ways to do this. One of the simplest is to use

the Calendar class built-in to Java. However, we’re going to take

a different approach for this problem. Suppose that we know that

the day January 1, 1800 was a Wednesday (startDay1800 =

3). We can compute the total number of days that have elapsed

between January 1, 1800 and the first date of the calendar month

in question.

• The start day for our calendar would be

(totalNumberOfDays + startDay1800) % 7.

• Further, we need to figure in leap years (isLeapYear).

• So we need to refine our sub-problem structure a bit more.

COP 3330: Methods In Java Page 38 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

getStartDay

getTotalNumberOfDays

getNumberOfDaysInMonth

getTotalNumberOfDays

isLeapYear

COP 3330: Methods In Java Page 39 © Dr. Mark Llewellyn

Method Abstraction And Stepwise Refinement

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

readInput

getMonthName getStartDay

getTotalNumberOfDays

isLeapYear

getNumberOfDaysInMonth

COP 3330: Methods In Java Page 40 © Dr. Mark Llewellyn

Top-Down or Bottom-Up Implementation

• Now that we have designed our solution to the problem, its

time to begin implementation.

• In general, a sub-problem in our design will correspond to a

method in the implementation. Although, some sub-

problems may be so simple that a separate method is not

warranted and it may be combined in another method.

– Decisions of this sort should be based on whether the overall

program will be easier to read if the sub-problem remains as a

separate method or is incorporated into another sub-problem’s

method implementation.

– For example, in this problem, we might justifiably implement the

readInput sub-problem in main rather than create a separate

method.

COP 3330: Methods In Java Page 41 © Dr. Mark Llewellyn

Top-Down or Bottom-Up Implementation

• We can use either a top-down or bottom-up
approach to implementation.

• A top-down approach implements one method in
the structure diagram at a time from the top to the
bottom of the diagram.

– Working from more general sub-problems toward more
specific sub-problems.

• A bottom-up approach implements one method in
the structure diagram at a time from the bottom of
the diagram to the top.
– Working from more specific sub-problems toward more general

sub-problems.

COP 3330: Methods In Java Page 42 © Dr. Mark Llewellyn

Top-Down or Bottom-Up Implementation

• With either approach, a common technique for
implementation is to create stubs for each sub-
problem in the structure diagram.

• A stub (or stub method) is a simple, working but
incomplete version of a method.

• The use of stubs allows you to quickly build the
framework of the program, which is filled in as you
complete either a top-down or bottom-up approach.

• In our example, using a top-down approach, we
would implement main first, followed by a stub for
printMonth.

COP 3330: Methods In Java Page 43 © Dr. Mark Llewellyn

COP 3330: Methods In Java Page 44 © Dr. Mark Llewellyn

COP 3330: Methods In Java Page 45 © Dr. Mark Llewellyn

COP 3330: Methods In Java Page 46 © Dr. Mark Llewellyn

Implementation Details

• Continuing with our example or printing a

monthly calendar based on the month and year

supplied by the user, we now will focus on

implementation issues.

• So far we’ve only completed the structural

design of our solution and created a Java class

that implemented stubs for each of the methods

we defined in our solution. The desired output

and the structural design chart are repeated on

the next two pages.

COP 3330: Methods In Java Page 47 © Dr. Mark Llewellyn

Output from the calendar program

COP 3330: Methods In Java Page 48 © Dr. Mark Llewellyn

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

readInput

getMonthName getStartDay

getTotalNumberOfDays

isLeapYear

getNumberOfDaysInMonth

Structure chart for our problem

COP 3330: Methods In Java Page 49 © Dr. Mark Llewellyn

Execution of stub version in Eclipse

Shows execution of main method and

stub for printMonth which simply prints its

arguments at the moment.

COP 3330: Methods In Java Page 50 © Dr. Mark Llewellyn

Implementation Details

• As we develop the method bodies for the various methods as defined in our

structure chart, we’ll have some specific implementation details that must be

dealt with at the time.

• However, our abstraction gives us the luxury of only needing to deal with

those details when we are developing the code for that specific method. When

dealing with other methods, those details specific to other methods are not

important – we’ve abstracted away those details.

• For example, when we need to develop the isLeapYear(int year)

method, we’ll need to know that leap years are years that are evenly divisible

by 4. Years that are evenly divisible by 100 are not leap years unless they are

also evenly divisible by 400 (in the Gregorian calendar at least).

So we could say:
if (year modulo 4 is 0) and (year modulo 100 is not 0)

or (year modulo 400 is 0) then leap else no_leap

In Java we would express this condition as:

return(year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);

COP 3330: Methods In Java Page 51 © Dr. Mark Llewellyn

Implementation Details

• Similarly, to implement the method:

getTotalNumberOfDaysInMonth(int year, int month), we’ll need to

know that January, March, May, July, August, October, and December

each have 31 days. April, June, September, and November each have

30 days. February has 28 days in a common year and 29 days in a leap

year. So a regular year has 365 days and a leap year has 366 days.

• To implement

getTotalNumberOfDays(int year, int month), we’ll get sum the total

number of days between January 1, 1800 and the first day of the month

of the calendar. To do this we can calculate the total number of days

from January 1, 1800 to January 1 of the year in question and then add

the remaining days in the calendar year to the first of the month in

question.

COP 3330: Methods In Java Page 52 © Dr. Mark Llewellyn

Implementation Details

Design method

Implement method

Create test program for the method

Method tests OK

Go to next method

Method fails tests

Fix method

implementation

COP 3330: Methods In Java Page 53 © Dr. Mark Llewellyn

Implementation Details

• We’ll continue our development of this program using a top-down

approach. This means that we would first implement the main method

(the one on the top of our structure chart).

• The main method, based on our structure chart is based on two sub-

problems, readInput and printMonth.

• We’ll decide here, for the sake of readability that the statements that

would comprise the readInput method, which involve reading the

year and month for which the user would like the calendar, will simply

be coded as statements in the main method. The alternative is to

create a method for this, however, in this case, it is relatively simple

input and it would seem unnecessary to place this code in a method, so

we’ll simply move those tasks to the main method.

– Note that if we did implement a readInput method that main would

consist of only two lines of code, the first to invoke the readInput

method and the second would be to invoke the printMonth method.

COP 3330: Methods In Java Page 54 © Dr. Mark Llewellyn

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

Read user input

getMonthName getStartDay

getTotalNumberOfDays

isLeapYear

getNumberOfDaysInMonth

Modified structure chart for our problem

COP 3330: Methods In Java Page 55 © Dr. Mark Llewellyn

Implementation Details

• Next, we’ll focus on the printMonth method. As you

can see from the structure chart on the previous page, this

sub-problem consists of two sub-problems: (1)

printMonthTitle and (2) printMonthBody. Thus,

the implementation of this method will consist of two

method invocations for the respective sub-problems.

COP 3330: Methods In Java Page 56 © Dr. Mark Llewellyn

Implementation Details

/** Print the calendar for a month in a year */

static void printMonth(int year, int month) {

// Print the headings of the calendar

printMonthTitle(year, month);

// Print the body of the calendar

printMonthBody(year, month);

}

Complete version

/** stub for printMonth */

public static void printMonth(int year, int month){

System.out.print(month + " " + year);

}//end printMonth method

Stub version

COP 3330: Methods In Java Page 57 © Dr. Mark Llewellyn

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

Read user input

getMonthName getStartDay

getTotalNumberOfDays

isLeapYear

getNumberOfDaysInMonth

Modified structure chart for our problem

COP 3330: Methods In Java Page 58 © Dr. Mark Llewellyn

Implementation Details

• Using the top-down approach, we’ll work with the

printMonthTitle sub-problem first. This task

consists of building the header information for the calendar

in question. So this method will need to know the year and

month from the input, so we set both as arguments to the

method. The rest is handled with print statements.

COP 3330: Methods In Java Page 59 © Dr. Mark Llewellyn

Implementation Details

/** Print the month title, e.g., June, 2011 */

static void printMonthTitle(int year, int month) {

System.out.println();

System.out.println("-----------------------------");

System.out.println(" " + getMonthName(month)

+ " " + year);

System.out.println("-----------------------------");

System.out.println(" Sun Mon Tue Wed Thu Fri Sat");

}

Complete version

/** stub for printMonthTitle */

public static void printMonthTitle(int year, int month) {

}//end printMonthTitle method

/** stub for printMonthBody */

Stub version

COP 3330: Methods In Java Page 60 © Dr. Mark Llewellyn

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

Read user input

getMonthName getStartDay

getTotalNumberOfDays

isLeapYear

getNumberOfDaysInMonth

Modified structure chart for our problem

COP 3330: Methods In Java Page 61 © Dr. Mark Llewellyn

Implementation Details

/** stub for getMonthName */

public static String getMonthName(int month){

return("January"); //dummy value

}//end getMonthName method

Stub version

COP 3330: Methods In Java Page 62 © Dr. Mark Llewellyn

Implementation Details

/** Get the English name for the month */

static String getMonthName(int month) {

String monthName = null;

switch (month) {

case 1: monthName = "January"; break;

case 2: monthName = "February"; break;

case 3: monthName = "March"; break;

case 4: monthName = "April"; break;

case 5: monthName = "May"; break;

case 6: monthName = "June"; break;

case 7: monthName = "July"; break;

case 8: monthName = "August"; break;

case 9: monthName = "September"; break;

case 10: monthName = "October"; break;

case 11: monthName = "November"; break;

case 12: monthName = "December";

}

return monthName;

}

Complete version

COP 3330: Methods In Java Page 63 © Dr. Mark Llewellyn

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

Read user input

getMonthName getStartDay

getTotalNumberOfDays

isLeapYear

getNumberOfDaysInMonth

Modified structure chart for our problem

COP 3330: Methods In Java Page 64 © Dr. Mark Llewellyn

Implementation Details

public static void printMonthBody(int year, int month) {

}//end printMonthBody method

Stub version

COP 3330: Methods In Java Page 65 © Dr. Mark Llewellyn

Implementation Details

/** Print month body */

static void printMonthBody(int year, int month) {

// Get start day of the week for the first date in the month

int startDay = getStartDay(year, month);

// Get number of days in the month

int numberOfDaysInMonth = getNumberOfDaysInMonth(year, month);

// Pad space before the first day of the month

int i = 0;

for (i = 0; i < startDay; i++)

System.out.print(" ");

for (i = 1; i <= numberOfDaysInMonth; i++) {

if (i < 10)

System.out.print(" " + i);

else

System.out.print(" " + i);

if ((i + startDay) % 7 == 0)

System.out.println();

}

System.out.println();

}

Complete version

COP 3330: Methods In Java Page 66 © Dr. Mark Llewellyn

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

Read user input

getMonthName getStartDay

getTotalNumberOfDays

isLeapYear

getNumberOfDaysInMonth

Modified structure chart for our problem

COP 3330: Methods In Java Page 67 © Dr. Mark Llewellyn

Implementation Details

/** Get the start day of month/1/year */

static int getStartDay(int year, int month) {

final int START_DAY_FOR_JAN_1_1800 = 3;

// Get total number of days from 1/1/1800 to month/1/year

int totalNumberOfDays = getTotalNumberOfDays(year, month);

// Return the start day for month/1/year

return (totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7;

}

Complete version

/** stub for getStartDay */

public static int getStartDay(int year, int month) {

return 1; //dummy value

}//end getStartDay method

Stub version

COP 3330: Methods In Java Page 68 © Dr. Mark Llewellyn

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

Read user input

getMonthName getStartDay

getTotalNumberOfDays

isLeapYear

getNumberOfDaysInMonth

Modified structure chart for our problem

COP 3330: Methods In Java Page 69 © Dr. Mark Llewellyn

Implementation Details

/** Get the total number of days since January 1, 1800 */

static int getTotalNumberOfDays(int year, int month) {

int total = 0;

// Get the total days from 1800 to 1/1/year

for (int i = 1800; i < year; i++)

if (isLeapYear(i))

total = total + 366;

else

total = total + 365;

// Add days from Jan to the month prior to the calendar month

for (int i = 1; i < month; i++)

total = total + getNumberOfDaysInMonth(year, i);

return total;

}

Complete version

/** stub for getTotalNumberOfDays */

public static int getTotalNumberOfDays(int year, int month) {

return 10000; //dummy value

}//end getTotalNumberOfDays

Stub version

COP 3330: Methods In Java Page 70 © Dr. Mark Llewellyn

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

Read user input

getMonthName getStartDay

getTotalNumberOfDays

isLeapYear

getNumberOfDaysInMonth

Modified structure chart for our problem

COP 3330: Methods In Java Page 71 © Dr. Mark Llewellyn

Implementation Details

/** Determine if it is a leap year */

static boolean isLeapYear(int year) {

return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);

}

Complete version

/** stub for isLeapyear */

public static boolean isLeapYear(int year) {

return true; //dummy value

}//end isLeapYear method}

Stub version

COP 3330: Methods In Java Page 72 © Dr. Mark Llewellyn

printMonth

printMonthTitle printMonthBody

printCalendar

(main)

Read user input

getMonthName getStartDay

getTotalNumberOfDays

isLeapYear

getNumberOfDaysInMonth

Modified structure chart for our problem

COP 3330: Methods In Java Page 73 © Dr. Mark Llewellyn

Implementation Details

/** Get the number of days in a month */

static int getNumberOfDaysInMonth(int year, int month) {

if (month == 1 || month == 3 || month == 5 || month == 7 ||

month == 8 || month == 10 || month == 12)

return 31;

if (month == 4 || month == 6 || month == 9 || month == 11)

return 30;

if (month == 2) return isLeapYear(year) ? 29 : 28;

return 0; // If month is incorrect

}

Complete version

/** stub for getNumberOfDaysInMonth */

public static int getNumberOfDaysInMonth(int year, int month){

return 31; //dummy value

}//end getNumberOfDaysInMonth method

Stub version

COP 3330: Methods In Java Page 74 © Dr. Mark Llewellyn

Implementation Details

• We’re done!

• All of the subprograms have been implemented and tested

as we went from top to bottom in our structure chart.

• A complete program listing for this problem is available on

the course website.

COP 3330: Methods In Java Page 75 © Dr. Mark Llewellyn

Practice Problem

1. Rewrite the implementation of the PrintCalendar

application so that instead of having the main method

handle the user input, it is done via methods as per our

original design diagram. In this case, the main method

will do nothing except invoke the methods for reading the

input and printing the calendar.

Note that there are several different ways in which this

can be done. I’ll put a couple of different solutions on the

website for you to look at.

2. Create the UML class diagram for the PrintCalendar class

as we originally designed it.

